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Abstract. The validity of Fourier’s law is investigated by taking account of the temperature 
dependence of the thermal conductivity for the one- and two-dimensional diatomic lattices. 
The thermal conductivity is found to be proportional to the inverse of temperature for both 
the one- and two-dimensional lattices. Fourier’s law is confirmed by excluding the non- 
diffusive or ballistic energy flow from the total energy current. 

1. Introduction 

Heat transport in an electrically insulating material is attributed to the lattice vibrations 
and is described in terms of the phenomenological theory referred to as Fourier’s 
law. A number of simulations using molecular dynamics has been performed to verify 
Fourier’s law in low-dimensional lattices from first principles [1-6]. They were devoted 
to showing that the magnitude of the thermal conductivity was independent of system 
size and most attempts failed to present the normal thermal conductivity without external 
disturbances [6]. This series of disappointing results were reviewed by Visscher [7] and 
by MacDonald and Tsai [ 81. 

Recently Mokross and Buttner [9] exhibited that the thermal conductivity does not 
depend on the lattice size in a one-dimensional diatomic Toda lattice. Using a similar 
method, Jackson and Mistriotis [lo] tried to confirm evidence of Fourier’s law for much 
longer diatomic Toda lattices than those used by Mokross and Buttner and showed that 
the size-dependence of the thermal conductivity disappeared for lattices whose size is 
greater than 250 atoms. They also exhibited that the pulse-pulse collisions play dominant 
roles in the energy sharing mechanism. 

Although the previous works seemed to present successfully the normal thermal 
conductivity [9,10], the estimated magnitudes of the thermal conductivity could not 
be considered to be the correct ones. If the systems could offer the normal thermal 
conductivity, the thermal conductivity has to be temperature dependent as is known in 
a real material [ 111, The temperature dependence has not been seriously considered so 
far, although there exists evidence of the deviation from the linear temperature-profile 
in the numerical experiments. In cases of long lattices with large temperature differences 
between lattice ends, concave temperature profiles have been seen [5,9,10], however, 
they were approximated with straight lines to evaluate the thermal conductivity. We 
assert that the bending temperature profile is related to the temperature dependence of 
the thermal conductivity and that it should be taken into account in investigating 
Fourier’s law. 
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We note here that the bending temperature profile is not an unrealistic phenomenon. 
In the steady, non-equilibrium state, the time-averaged heat current must be constant 
through the system. Therefore if the thermal conductivity depends on the local tem- 
perature, the temperature gradient should vary with the temperature or the lattice 
position. This leads naturally to the non-linear temperature profile. The temperature- 
dependent thermal conductivity of the two-dimensional lattices was studied by Mountain 
and MacDonald by means of molecular dynamics [12]. However, their criterion for the 
establishment of the steady, non-equilibrium state was the appearance of a linear 
temperature profile. This is not self-consistent for the temperature-dependent thermal 
conductivity because there is no longer a steady current independent of the lattice 
position. Therefore, the heat current must be constant through the system for the steady, 
non-equilibrium state. The change in the temperature profile is expected to reflect the 
structural characteristics of the relevant system. 

Another troublesome phenomenon due to the large temperature difference of heat 
reservoirs is that the energy may not only be transferred by a diffusion process [5,10]. 
As the net non-diffusive or ballistic energy flow increases with the temperature difference 
between the heat reservoirs, the evaluation of thermal conductivity by means of the 
crude observed-heat currents does not give the correct results. Then, we have to exclude 
the contribution of the non-diffusive part from the heat current in order to investigate 
the thermal conductivity. 

In this paper, we study the validity of Fourier’s law for the one- and two-dimensional 
Toda lattices using molecular dynamics techniques. We take account of the non-linear 
temperature profiles and of the non-diffusive energy flow to estimate the thermal con- 
ductivity. In addition to the size-independent magnitude of the thermal conductivity, we 
employ another criterion for the validity of Fourier’s law that the thermal conductivity 
should be expressed with the same function of the temperature in different temperature 
regions. We, therefore, examine the system with different sizes in various temperature 
regions. 

The plan of this paper is as follows: in section 2, we give a brief description for the 
two kinds of non-linear lattices, one of which is the one-dimensional diatomic Toda 
lattice and the other is the two-dimensional diatomic Toda lattice. Details of numerical 
simulation are also described in this section. As we examine the system over a wide 
range of temperature, there is a question as to whether the system can exhibit dynamical 
irreversibility at very low temperatures. In section 3, we investigate the dynamical 
behaviour over a short time period which is essential to the thermodynamic behaviour. 
The resultant temperature profiles are analysed and fitted with an empirical formula of 
the exponential type in section 4. In section 5 ,  we estimate the heat currents from the 
measurements. The heat currents are assumed to consist of the ballistically propagating 
energy flow and the normal one which is expected to obey Fourier’s law. The temperature 
dependence of the thermal conductivity is derived from the numerical result in which the 
heat current is constant through the system. The magnitude of the thermal conductivity is 
estimated by excluding the ballistic energy currents from the total heat currents. The 
resultant thermal conductivity becomes proportional to the inverse of the local tem- 
perature and the magnitude is independent of the lattice sizes. The last section will be 
devoted to the summary and discussions. 

2. One- and two-dimensional diatomic Toda lattices and numerical simulations 

As the one-dimensional diatomic Toda lattice is well known [7,8], we begin this section 
with the two-dimensional Toda lattice referred to as Mikhailov’s lattice [ 131 which is 
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L specimen J Figure 1. Model and experimental situation for 
/ I .  N 1 iN . N. 1 the two-dimensional lattice. Full and open circles 

denote the atoms with masses m,, and m ,  of the 
specimen lattice, respectively. The grey circles 
denote the atoms with masstnoin the buffer areas. 
All particles are connected with Toda potentials 
along the x direction and harmonic potentials 
along they direction. The periodic boundary con- 
dition is used for the displacement along the y 
direction. The lattice is heated by the elastic col- 
lisions of atoms between the lattice ends and the 
heat reservoirs whose temperatures are OH and 
6L. 

obtained by arranging Ny one-dimensional Toda lattices with N, atoms in lines and by 
connecting atoms side by side with nearest-neighbour harmonic potentials. This lattice 
is found to be analytically integrable [13] as is the one-dimensional Toda lattice. Here 
we restrict the displacement of the atoms to be scalar. It is easily understood that the 
system is reduced to the one-dimensional Toda lattice if we put N y  = 1. In order to 
introduce the non-integrability into the system, we modify the mass configuration by 
putting two kinds of masses on the lattice sites as follows: 

for even i 
(1) Cr for odd i 

m., = 
11 

for any j ,  where the subscripts i and j denote the position in the lattice in the x- and y -  
direction, respectively. In the numerical experiments, large temperature discontinuities 
are observed at the interfaces between the heat reservoirs and the specimen lattice. This 
phenomenon has been referred to as thermal boundary resistance or Kapitza resistance 
due to a large mismatch in acoustic impedance between them [14]. As it strongly deforms 
the temperature profile in the vicinity of the interfaces, we put mono-atomic lattices as 
buffer areas between the heat reservoirs and the specimen lattice. The temperatures of 
these buffer areas are almost constant in each area and are well-defined experimentally 
as seen below. We set the mass of the buffer areas to be mo. In what follows, we set mo = 
1 and m ,  = 0.5. Figure 1 shows the mass configuration for the diatomic Mikhailov’s 
lattice. 

As can be seen in figure 1, N ,  and Ny denote the size of the specimen lattice and 
each buffer area has atomic length N ; .  Then our system has the total atomic length 
N ( =  N ,  + 2N:) .  We set N: = 10 throughout the present experiments. Due to the 
restriction of the computer capacity, Ny is set to be 10. The length of the specimen lattice 
N, varies in the range from 250 to 450. 

The total energy for this system is written by 

2mV 
+ interaction with heat reservoirs 

wherepV and uii are the momentum and displacement of the atom at (i, j )  sites, respect- 
ively. The potential function V(r)  is a Toda potential such as 

and the harmonic potential U(r)  is expressed as 

a, b and care  the potential parameters which are all set to unity in this paper. A periodic 

(2) 

V(r) = (b /a)  exp(-ar) + br - (b /a)  (3) 

U(r )  = (c/2)r2. (4) 
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boundary condition is used for the displacement of the end column atoms, i.e. 

The atoms linked to the fixed walls with the anharmonic potentials interact impul- 
sively with heat reservoirs with prescribed temperatures at 6, and OL,  respectively. The 
energy is exchanged through elastic collisions of the end atoms with gas particles in the 
reservoirs. The gas particles have the Maxwell distribution in velocity of the form 

4 . 1  = U i N y + l *  

N ( u ,  e )  = v m  exp( - M u 2 / 2 k ~ 8 )  ( 5 )  
where M is the mass of gas particles which is set to unity in these experiments. Here 6 and 
kB are the temperature of the heat reservoir and the Boltzmann constant, respectively. In 
the present work, kB is set to unity. 

The equation of motion is numerically solved by means of the Runge-Kutta-Gill 
method. The time inverval 6t is chosen so that the computational errors in the total 
energy conservation are suppressed within 0.1% of the total energy through the experi- 
ments. The magnitude of the time interval depends on the temperature region of the 
numerical experiments and becomes of the order of to lo-* in our case. 

3. Local rate of divergence of trajectories and temperature region with stochastic 
behaviour 

If the system obeys Fourier’s law whose thermal conductivity has the temperature 
dependence, the thermal conductivity should be expressed with a function of tempera- 
ture. The function must be the same formula in different temperature regions where the 
system exhibits irreversibility enough for the normal thermal conductivity. This is the 
other criterion of the validity of Fourier’s law. Then we examine the system in several 
temperature regions to be distinguished in terms of pairs of temperatures of heat 
reservoirs where the ratio t9,/OL is set to equal 4. In what follows, we refer to them as 
A,B,C,DandEwhichdenote(OH = 2, OL = 0.5) , (6 ,  = 10, OL = 2.5), (6, = 20, eL = 
5 ) ,  (6, = 40, OL = 10) and (e ,  = 80, OL = 20), respectively. 

As the non-linearity is reduced effectively with lowering temperature, there is a 
possibility that the system no longer exhibits the irreversibility at very low temperatures. 
The normal thermal conductivity is not expected in such a temperature region. There- 
fore, it is necessary to investigate the critical temperature for the transition from infinite 
to finite thermal conductivity. 

The stochastic behaviour is believed to be related to the irreversibility and the 
divergence of trajectories starting from the close points in phase space has often been 
investigated for quantitative discussions. In the thermal equilibrium state, we describe 
the rate of divergence by means of Lyapunov characteristic exponents. As noted by 
Jackson and Mistriotis [lo], on the other hand, the dynamical behaviour in a short 
time interval, which is characteristic to the system, is essential to the thermodynamic 
behaviour in the non-equilibrium state. The time interval was taken to be the sound- 
transit time across the system. According to them, even a non-integrable system would 
not exhibit irreversibility within a characteristic time interval shorter than that of the 
loss of correlation between initial and final positions in the phase space. How fast 
the correlation is lost depends on the effective strength of the non-linearity or the 
temperature of the system. We, therefore, try to investigate the divergence of tra- 
jectories in the short time interval for various values of the energy of the system. We 
employ the method developed by Jackson and Mistriotis [lo] to test the rate of the 
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Figure 2. The probability that the system exhibits 
the stochastic behaviour within the short time 
interval as a function of the energy per atom. The 
examined system is the diatomic Toda lattice with 
N = 30. The characteristic time interval is T, = 
25. 

divergence. The examined system is the one-dimensional diatomic Toda lattice without 
the buffer areas. The lattice size is 30 atoms for computational convenience. The sound- 
transit time, T,, is determined to be 25 from the pulse and wave propagation experiments. 
Since the rate depends on the position in the phase space, we therefore try more than 
one hundred measurements of the local rate of divergence for each energy. The type of 
divergence is judged from the value of y(  T,) which is defined by 

~ ( T S )  = I T s  d t {td (t> - A(qr 3 P r ,  Ts) exp(k(qr, P r  3 T S ) ~ )  1 2  
0 

- ld(t) - B ( q r , p r ,  Ts) t -  C(qr ,Pr ,  Ts)l2>. (6) 
Here, the notations of equation (6) are the same as those used in [lo]. If p < 0, the 
divergence is considered to be exponential with time. We perform this test numerically 
and the ratios of the number of the exponential development of the distance with time, 
M I ,  to the total trials, M ,  versus the energy per site, E / N ,  are plotted in figure 2. Below 
E/N = 1.33, the ratio becomes zero. The local rates increase with increasing energy and 
saturate above E/N = 5. We show the tendency with a broken curve. The broken curve 
is the lower limit and the system is expected to exhibit the irreversibility above E/N = 
1.33 in the thermodynamic limit ( N 4  m). Although the temperature does not coincide 
exactly with the energy per atom, as shown in the following section, the magnitudes are 
comparable to each other. We then roughly estimate the critical temperature from 
infinite to finite thermal conductivity to be 1.33. The regions labelled A and B are the 
temperature regions of the specimen lattices, which will be discussed in the next section. 

4. Temperature profiles 

We define the local temperature to be twice as large as the total-time-average of the 
local kinetic energy. The temperature profile along the x direction of the lattice is 
obtained by averaging the local temperature over the lattice width. 

Here ( ), denotes the total-time-average. Figures 3(a) and ( b )  exhibit the temperature 
profiles of the one- and two-dimensional lattices, respectively. Both figures show the 
exponential decrease of the temperature with lattice positions. As we are keeping the 
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Ny= 1 y =  350 
Ny= 10 

ratio of the temperatures of the heat reservoirs constant, the temperature profiles 
become parallel as seen in figures 3(a) and (b )  except the data for the temperature region 
A. As is easily understood from the discussion in the previous section, the system cannot 
exhibit the irreversibility below the critical temperature corresponding to the energy 
E/N = 1.33. This is the reason why the temperature gradient in the region A is 
distinguished from those in the high temperature regions. In what follows, we use the 
two-dimensional lattices to investigate the heat conduction at low temperatures. 

Though we plot the resultant temperature profiles only for N, = 350, we have quite 
similar temperature profiles for N, = 250 and 450 for both the one- and two-dimensional 
cases. As mentioned above, the temperature profiles exhibit exponential decrease from 
the end of the lattice for both dimensional lattices. We can, therefore, approximate the 
temperature profile independently of dimensionality with the exponential function of 
the form 

~ ( x )  = T ~ ( T ~ / T ~ ) , ” x  (8) 
where TH and TL are not the temperatures of the heat reservoirs but are those at the 
ends of the specimen lattice and x measures the distance from the interface between the 
buffer area and the specimen lattice. Here we usex instead of subscript i, for convenience. 
The magnitudes of TH and TL are estimated by the least-square method. Therefore, TH 
and TL do not exactly coincide with the observed values because of the thermal boundary 
resistance. In terms of the empirical formula for the temperature profile (8), the tem- 
perature gradient yields 

dT/dx = - ( l / N , )  ln(TH/TL)T. (9) 

5. Normal heat currents and thermal conductivity 

The heat current along the x direction is an observable of interest, too, and is derived 
from the local energy conservation. The local energy of an atom at site ( i ,  j )  is written 
as 
Ejj = py2mij + i[V(Ujj  - u i - l j )  + V(u,  - u; j - l ) ]  + l[v(ui+lj - U i j )  

+ U ( U ~ + ~  - u j j ) ]  +interaction with the reservoirs. (10) 
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Hereafter, let J ( i j ;  kl) stand for the energy current from (ij) site to (k l ) .  The energy 
current obeys the following difference equation implying the local energy conservation 
law. 

J ( i +  1j; ij) - J ( i j ;  i- l j )+J ( i j+  1; i j )  - j ( i j ;  ij- 1) + a E , / a t  

QH, and QLj in the right-hand side of equation (11) are the exchanged energies per unit 
time with the heat reservoirs of high and low temperature, respectively. Because the 
energy transfer takes place through the interatomic potentials, only the energy flow 
between the adjacent sites is allowed. As we are interested in the heat flow along the x 
direction, we extract the relevant heat flow from equation (11) by averaging the equation 
over the lattice width under the periodic boundary condition J(i0; i l )  = J(iN,; iN, + 1). 
Summing up the equations with respect to i up to k yields 

We define the heat current J,(k + 1; k )  along thex direction by taking different kinds of 
time average of equation (12) from the total-time-average to be discussed below 

It should be noted here that the angle brackets do not have the subscript t for the 
distinction from the total-time-average. The first term in the right-hand side is the heat 
flow from the fixed wall to the first row atoms after which it is expected to vanish. The 
second one does not contribute to the heat current in a steady non-equilibrium state 
where the steady temperature profile is established. Therefore, the current no longer 
has the site dependence after the establishment of the steady state. We check the heat 
currents at five lattice positions referred to as a,  0, y ,  6 and E. The points a and E are 
located at the interface between the heat reservoirs with high and low temperatures, 
and the others 0, y and 6 are at N/4, N/2 and 3N/4 measured from the point a, 
respectively. 

Instead of the total-time-average, we define the time-average of the heat flow as 
follows: 

1 
( J )  = - (I”” J ( t )  d t  - 1; J ( t )  dr) 

0 

whereJ(t) means the right-hand side of equation (12). Here z is taken to be as large as 
possible so that the site dependence of ( J )  may disappear. We plot the heat currents 
from equation (13) for the two-dimensional lattice in figure 4. In this case, tl is taken to 
be 3 x lo5 steps. The five heat currents observed coincide with each other in magnitude 
to an accuracy of 0.3%. The steady state is clearly established. The time-averaged 
magnitude of the heat currents becomes 1.212 X The fluctuation width becomes 
12% of the averaged magnitude in this case. The fluctuation widths are larger in the one- 
dimensional case than those in the two-dimensional case. The advantage of this time- 
averaging method is to obtain the magnitude precisely in a shorter computational time 
than the total-time-averaging case since the heat currents gather proportionally to the 
inverse of computational time in the latter case. For the temperature profiles, we use 
the total-time-average because the profile is not sensitive to the averaging method. 
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Figure 4. Heat currents versus time steps for the two-dimensional lattice with N ,  = 250 and 
N ,  = 10. The temperatures of the heat reservoirs are OH = 40 and 0,. = 10. The Greek letters 
denote the positions for the observation of the heat currents in the lattice. a and E are at the 
interface between the heat reservoir with high and low temperature, and /3, y and 6 are 
located at N / 4 ,  NI2 and 3N/4 measured from a, respectively. 

Here we write the heat current Jx as 
Jx = JN -t JB. 

The first term of the right-hand side is the normal heat current due to the local tem- 
perature gradient and the other is the ballistic or non-diffusive part. The normal heat 
current JN is expected to obey the following Fourier law 

JN = -K d Tldx. (16) 

Here we assume that the ballistic energy flow depends on the temperature difference of 
the buffer areas and on the system size since the buffer areas effectively act as the heat 
baths. The temperatures of the buffer areas TB,H and TB,L are slightly larger and smaller 
than TH and TL, respectively, because of the thermal boundary resistance. 

Substituting equations (9) and (16) into (15) yields 

Jx = K (l/Nx) log(TH/TL)T+JB(TB,H - TB,L,Nx).  (17) 
Equation (17) gives the temperature dependence of the thermal conductivity. Although 
the temperature distributes between TH and TL, the measured heat currents are inde- 
pendent of the temperature in the steady, non-equilibrium state as discussed above. 
Therefore, the thermal conductivity must be proportional to the inverse of the tem- 
perature to cancel out the temperature dependence of the first term of the right-hand 
side of (17). Then we can write the thermal conductivity as follows: 

K = E/T (18) 

where is a constant. 
The question arises as to whether the thermal conductivity defined by equation (18) 

is an intensive quantity or whether 5 is independent of the system size. In order to 
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'0 10 20 30 40 50 60 '0 10 20 30 40 50 60 

TB.H-TB.L TB,H-TB.L 

Figure 5. The heat current per unit length/log( TH/TL) versus temperature difference of the 
buffer areas. Open circles, squares and triangles denote the data for the lattices with N,  = 
250, 350 and 450, respectively. The full curve is drawn with the least-squares method to 
exhibit the extrapolation of the data to zero temperature difference. (a)  Represents the one- 
dimensional Toda lattice, and C, D and E denote the temperature regions to be observed. 
The extrapolated magnitude of 8 becomes 1.83. ( b )  Represents the two-dimensional dia- 
tomic Toda lattice, and A, B,  C, D and E denote the temperature regions to be observed. 
The extrapolated magnitude of lj becomes 1.44. 

estimate f from the measurements, we have to exclude the contribution of the ballistic 
heat current from (17). If we could take the limit of the temperature difference to zero 
whilst keeping the ratio TH/TL constant, we would obtain the normal heat current in the 
limit. However, the very low temperature experiment cannot give the normal heat 
current because the irreversibility is not expected in such a temperature region. There- 
fore, we extrapolate 5 from the experimental data in the high temperature regions. 
Substituting equation (18) into (17) yields 

JxN.x/log(TH/TL) = 5 -t JB(TB.H - TB.L, Nx)Nx/log(TH/T,)* (19) 

Figures 5(a) and ( b )  show the results for the one- and two-dimensional lattices, 
respectively. As the temperature difference decreases, the magnitude of J,N,/log( TH/ 
T,) decreases drastically and seems to become positive and achieve a finite value at zero 
temperature difference. In addition, it should be noted that the results are almost size- 
independent. These facts say that the normal current exists and that the 5 is invariant 
for all the experiments. That is, we can conclude that Fourier's law is satisfied in the one- 
and two-dimensional lattices. The value of f yields 1.83 and 1.44 for the one- and two- 
dimensional lattices, respectively, from the figures. Here, we excluded the data of 
temperature region A for the estimation of f .  

We note here that the data of A deviate from the extrapolated full curve. This is 
quite reasonable because the system does not exhibit the stochastic dynamical motions 
in this temperature region and there is only the ballistic component in the heat current 
present which vanishes at the zero temperature difference. 

6. Summary and discussion 

In this paper, we examined the heat transport in the one- and two-dimensional non- 
linear lattices for testing the validity of Fourier's law in terms of molecular dynamics. 
We paid special attention to the bending of the temperature profiles in the lattice which 



7584 N Nishiguchi and T Sakuma 

had been overlooked by many authors and attributed the deviation from the linear 
temperature distribution to the temperature dependence of the thermal conductivity. 
The temperature profiles were investigated in detail and approximated well with the 
exponential function for both the one- and two-dimensional lattices. Substituting the 
specified temperature profile into the definition of thermal conductivity leads to the 
temperature-dependent thermal conductivity which is proportional to the inverse of 
the temperature. This behaviour is quite similar with that in a real material at high 
temperatures where the anharmonic interatomic potential plays an essential role in the 
heat transport in the solid. 

For the existence of Fourier’s law, the coefficient E of thermal conductivity must be 
an intensive quantity. That is, the coefficient has to be independent of system size. 
Excluding the ballistically propagating heat flow from the measured currents, we 
obtained 5 to be independent of the system size. This is the evidence of the validity of 
Fourier’s law in the relevant lattices. 

To investigate the temperature region where the normal thermal conductivity was 
expected, we examined the dynamical behaviour in the short time interval. We judged 
the type of the local rate of divergence of trajectories, whether it was linear or exponential 
with time. From the measure of the establishment of the irreversibility, M , / M ,  we found 
the critical temperature to be T, = 1.33, which indicates the transition from infinite to 
normal thermal conductivity. This result agrees with the temperature-region depen- 
dence of the temperature profiles and of the normal heat currents. Below the critical 
temperature, the gradient of the temperature profiles becomes quite small and the 
normal heat flow is drastically reduced. The reduction of the normal heat flow means 
also that the system does not exhibit the stochastic behaviour. 

Finally, we emphasise again that we should take account of the non-linear tem- 
perature profile and the existence of the ballistic heat current to estimate the thermal 
conductivity. 
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